Progress in Understanding the Extragalactic Background Light from Gamma Ray observations

Frank Krennrich, Iowa State University

Trevorfest

Opacity of the Universe: First Steps

Gould, R.J. & P.G. Schreder, PRL, 16, 252 (1966) Phys. Rev, 155, 5, p1404 (1967)

TeV emission from Blazar Mrk 421 Redshift z=0.03

> Punch, M. et al. (Whipple collaboration) Nature, 358, 477 (1992)

 $\gamma_{\text{TeV}} + \gamma_{\text{near-IR}} \rightarrow e^+ + e^-$

many contributions in 1990s: F. Stecker, S. Biller, V. Vassiliev, F. Aharonian, E. Dwek,

 γ_{EBL}

Tucson

Trevorfest

Extragalactic

What is the intensity of the EBL?

What is the intensity of the EBL?

Constraints from fluctuation measurements

Lower limits from galaxy counts

Accounting of the EBL sources

Accounting – Models

Accounting of the EBL sources

TeV γ-ray Sky 2013

 \rightarrow extragalactic sources

			11.0	=
	Name	Class	redshift	
	Centaurus A	R. G.	0.0008	
	M82	S.B.G.	0.00085	
	NGC253	S.B.G.	0.00093	
	M87	R. G.	0.0036	
	NGC 1275	R. G.	0.018	
	IC 310	R. G.	0.0188	
	Markarian 421	HBL	0.031	
	Markarian 501	HBL	0.034	
ອດ °	$1 ES \ 2344 + 514$	HBL	0.044	
50	Markarian 180	HBL	0.046	
	1ES 1959+650	HBL	0.047	
	AP Lib*	LBL	0.048	
	BL Lacertae	LBL	0.069	
	PKS 2005-489	HBL	0.071	
	W Comae	IBL	0.103	
	PKS 2155-304	HBL	0.116	
	B3 2247+381	HBL	0.119	
	RGB J0710+591	HBL	0.125	
	H 1426+428	HBL	0.129	
	1ES 1215 + 303	IBL	0.13^{\vee}	
	1 ES 0806 + 524	HBL	0.137	
	1RXS J101015.9-311909	HBL	0.143	N
	1ES 1440 + 122	IBL	0.163	푅
	H 2356-309	HBL	0.165	U
	VER J0648+152	HBL	0.179	<u>ă</u>
	1ES 1218+304	HBL	0.184	X
	1ES 1101-232	HBL	0.186	Ĕ
	RB5 0413 DVS 0447 420	HBL	0.19	⊐
	PK5-0447-439	HBL	0.205	
	1ES 1011+490	HBL	0.212	
	$1E5 0414 \pm 009$ S5 0716 ± 714	IDI	0.207	
	1 E S 0 0 0 0 + 675		0.31	
	1ES 0502+075	FSDO	0.410**	
	40 21.35 20 66 A	IDI	0.43	
	3C 00A	IDL	0.44*	$\langle /$
	DKS 1424+240	IBI	0.000	\checkmark
)	- 1 KO 1424724V	IDL	~ 0.0	
	1			
	/			

GeV/TeV γ-ray Sky 2013

G

electron-positron pair

H.E.S.S.

extragalactic sources

GeV & TeV spectra

Name	Class	redshift	_
Centaurus A	R. G.	0.0008	=
M82	S.B.G.	0.00085	
NGC253	S.B.G.	0.00093	
M87	R. G.	0.0036	
NGC 1275	R. G.	0.018	
IC 310	R. G.	0.0188	
Markarian 421	HBL	0.031	
Markarian 501	HBL	0.034	
1ES 2344+514	HBL	0.044	
Markarian 180	HBL	0.046	
$1 \text{ES} \ 1959 + 650$	HBL	0.047	
AP Lib*	LBL	0.048	
BL Lacertae	LBL	0.069	
PKS 2005-489	HBL	0.071	
W Comae	IBL	0.103	
PKS 2155-304	HBL	0.116	
B3 2247+381	HBL	0.119	
RGB J0710+591	HBL	0.125	
H 1426+428	HBL	0.129	
$1ES \ 1215 + 303$	IBL	0.13^{\heartsuit}	
1ES 0806 + 524	HBL	0.137	
1RXS J101015.9-311909	HBL	0.143	σ
1ES 1440+122	IBL	0.163	e E
H 2356-309	HBL	0.165	С С
VER J0648+152	HBL	0.179	. Ж
1ES 1218+304	HBL	0.184	X
1ES 1101-232	HBL	0.186	ല
RBS 0413	HBL	0.19	
PKS-0447-439	HBL	0.205	_
1ES 1011+496	HBL	0.212	
1ES 0414+009	HBL	0.287	
S5 0716+714	LBL	0.31	
1 ES 0502 + 675	HBL	0.416	
4C 21.35	FSRQ	0.43	
3C 66A	IBL	0.44	
3C 279	FSRQ	0.536	\checkmark
DI/C 1404-040	TDI .	>06	

Air Cherenkov Technique: Whipple 10m

θ

$$\varepsilon_{th}(E_{\gamma},\mu,z) = \frac{2(m_e c^2)^2}{E_{\gamma}(1-\cos\theta)}$$

$$\sigma_{\gamma\gamma}(E_{\gamma},\varepsilon,\mu,z) = \frac{3\sigma_T}{16}(1-\beta^2)f(\beta)$$

Trevorfest

 $E_{\gamma}[TeV] = \frac{0.86\lambda[\mu m]}{1 - \cos\theta}$

Tucson

October 26 2013

γ-ray Absorption by the EBL

γ -ray Absorption by the EBL

Consider special case: absorption by a black body photon gas with peak at 1 μ m

October 26 2013

γ -ray Absorption by the EBL

γ-ray Absorption by the EBL

October 26 2013

Tucson

Sources for probing the EBL

Name	Class	redshift	α_{GeV}	α_{TeV}	Range [TeV]
Centaurus A	R. G.	0.0008	2.76 ± 0.05	2.7 ± 0.5	0.2 - 5
M82	S.B.G.	0.00085	2.2 ± 0.2	2.5 ± 0.6	0.7 - 4
NGC253	S.B.G.	0.00093	1.95 ± 0.4	2.14 ± 0.18	0.3 - 50
M87	R. G.	0.0036	2.17 ± 0.07	2.5 ± 0.2	0.2 - 10
NGC 1275	R. G.	0.018	2.00 ± 0.02	3.96 ± 0.37	0.1 - 0.3
IC 310	R. G.	0.0188	2.10 ± 0.19	2.0 ± 0.14	0.1 - 7
Markarian 421	HBL	0.031	1.77 ± 0.01	$2.48 \pm 0.03^{*}$	0.1 - 5
Markarian 501	HBL	0.034	1.74 ± 0.03	$2.51 \pm 0.05^{\triangle}$	0.1 - 10
1ES 2344+514	HBL	0.044	1.72 ± 0.08	$2.78 \pm 0.09^{\triangle}$	0.3 - 2
Markarian 180	HBL	0.046	1.74 ± 0.08	3.3 ± 0.70	0.2 - 1
1ES 1959+650	HBL	0.047	1.94 ± 0.03	2.72 ± 0.14	0.2 - 2
AP Lib*	LBL	0.048	2.05 ± 0.04	2.5 ± 0.2	0.3 - 2
BL Lacertae	LBL	0.069	2.11 ± 0.04	3.6 ± 0.5	0.2 - 1
PKS 2005-489	HBL	0.071	1.78 ± 0.05	4.0 ± 0.4	0.2 - 2
W Comae	IBL	0.103	2.02 ± 0.03	3.81 ± 0.35	0.3 - 1
PKS 2155-304	HBL	0.116	1.84 ± 0.02	3.53 ± 0.05	0.4 - 5
B3 2247+381	HBL	0.119	1.84 ± 0.11	3.2 ± 0.5	0.2 - 1
RGB J0710+591	HBL	0.125	1.53 ± 0.12	2.69 ± 0.26	0.3 - 4.6
H 1426+428	HBL	0.129	1.32 ± 0.12	3.50 ± 0.35	0.3 - 10
1ES 1215+303	IBL	0.13°	2.02 ± 0.02	2.99 ± 0.15	0.1 - 1
1ES 0806+524	HBL	0.137	1.94 ± 0.06	3.6 ± 1.0	0.3 - 0.7
1RXS J101015.9-311909	HBL	0.143	2.24 ± 0.14	3.14 ± 0.53	0.3 - 1
1ES 1440+122	IBL	0.163	1.41 ± 0.18	3.3 ± 0.7	0.3 - 1
H 2356-309	HBL	0.165	1.89 ± 0.17	3.09 ± 0.24	0.3 - 2
VER J0648+152	HBL	0.179	17110.11	1110.0	0.3 - 0.8
1ES 1218+304	HBL	0.184	1.71 ± 0.07	3.07±0.09	0.2 - 2
1ES 1101-232	HBL	0.186	housened	2.0010.11	0.16 - 3.3
RBS 0413	HBL	0.19	1.55 ± 0.11	3.18 ± 0.68	0.25 - 1
PKS-0447-439	HBL	0.205	1.86 ± 0.02	4.36 ± 0.49	0.25 - 1
1ES 1011+496	HBL	0.212	1.72 ± 0.04	4.0 ± 0.50	0.25 - 0.6
1ES 0414 + 009	HBL	0.287	1.98 ± 0.16	3.44 ± 0.27	0.25 - 1.2
S5 0716+714	LBL	0.31	2.01 ± 0.02	3.45 ± 0.54	0.25 - 1.2
1ES 0502+675	HBL	0.416	1.49 ± 0.07	3.92 ± 0.35	0.25 - 1
4C 21.35	FSRQ	0.43	2.12 ± 0.02	3.75 ± 0.27	0.07 - 0.4
3C 66A	IBL	0.44^{-1}	1.85 ± 0.02	4.1 ± 0.4	0.22 - 0.45
3C 279	FSRQ	0.536	2.22 ± 0.02	3.03 ± 0.9	0.1 - 0.35

Do we see spectral softening (z)?

- > 3 dozen extragalactic sources (blazars, few radio & starburst galaxies)
- Spectra ~ 1 GeV 1 TeV
- redshift (known for 50% of BL Lacs)

Sources for probing the EBL

-		-		-	
Name	Class	redshift	α_{GeV}	α_{TeV}	Range [TeV]
Centaurus A	R. G.	0.0008	2.76 ± 0.05	2.7 ± 0.5	0.2 - 5
M82	S.B.G.	0.00085	2.2 ± 0.2	2.5 ± 0.6	0.7 - 4
NGC253	S.B.G.	0.00093	1.95 ± 0.4	2.14 ± 0.18	0.3 - 50
M87	R. G.	0.0036	2.17 ± 0.07	2.5 ± 0.2	0.2 - 10
NGC 1275	R. G.	0.018	2.00 ± 0.02	3.96 ± 0.37	0.1 - 0.3
IC 310	R. G.	0.0188	2.10 ± 0.19	2.0 ± 0.14	0.1 - 7
Markarian 421	HBL	0.031	1.77 ± 0.01	$2.48 \pm 0.03^{*}$	0.1 - 5
Markarian 501	HBL	0.034	1.74 ± 0.03	$2.51\pm0.05^{\triangle}$	0.1 - 10
1ES 2344+514	HBL	0.044	1.72 ± 0.08	$2.78 \pm 0.09^{\triangle}$	0.3 - 2
Markarian 180	HBL	0.046	1.74 ± 0.08	3.3 ± 0.70	0.2 - 1
1ES 1959+650	HBL	0.047	1.94 ± 0.03	2.72 ± 0.14	0.2 - 2
AP Lib*	LBL	0.048	2.05 ± 0.04	2.5 ± 0.2	0.3 - 2
BL Lacertae	LBL	0.069	2.11 ± 0.04	3.6 ± 0.5	0.2 - 1
PKS 2005-489	HBL	0.071	1.78 ± 0.05	4.0 ± 0.4	0.2 - 2
W Comae	IBL	0.103	2.02 ± 0.03	3.81 ± 0.35	0.3 - 1
PKS 2155-304	HBL	0.116	1.84 ± 0.02	3.53 ± 0.05	0.4 - 5
B3 2247+381	HBL	0.119	1.84 ± 0.11	3.2 ± 0.5	0.2 - 1
RGB J0710+591	HBL	0.125	1.53 ± 0.12	2.69 ± 0.26	0.3 - 4.6
H 1426+428	HBL	0.129	1.32 ± 0.12	3.50 ± 0.35	0.3 - 10
1ES 1215+303	IBL	0.13°	2.02 ± 0.02	2.99 ± 0.15	0.1 - 1
1ES 0806+524	HBL	0.137	1.94 ± 0.06	3.6 ± 1.0	0.3 - 0.7
1RXS J101015.9-311909	HBL	0.143	2.24 ± 0.14	3.14 ± 0.53	0.3 - 1
1ES 1440+122	IBL	0.163	1.41 ± 0.18	3.3 ± 0.7	0.3 - 1
H 2356-309	HBL	0.165	1.89 ± 0.17	3.09 ± 0.24	0.3 - 2
VER J0648+152	HBL	0.179	17110.11	1110.0	0.3 - 0.8
1ES 1218+304	HBL	0.184	1.71 ± 0.07	3.07±0.09	0.2 - 2
1ES 1101-232	HBL	0.186	Income and	2.8010.11	0.16 - 3.3
RBS 0413	HBL	0.19	1.55 ± 0.11	3.18 ± 0.68	0.25 - 1
PKS-0447-439	HBL	0.205	1.86 ± 0.02	4.36 ± 0.49	0.25 - 1
1ES 1011+496	HBL	0.212	1.72 ± 0.04	4.0 ± 0.50	0.25 - 0.6
1ES 0414+009	HBL	0.287	1.98 ± 0.16	3.44 ± 0.27	0.25 - 1.2
S5 0716+714	LBL	0.31	2.01 ± 0.02	3.45 ± 0.54	0.25 - 1.2
1ES 0502+675	HBL	0.416^{-1}	1.49 ± 0.07	3.92 ± 0.35	0.25 - 1
4C 21.35	FSRQ	0.43	2.12 ± 0.02	3.75 ± 0.27	0.07 - 0.4
3C 66A	IBL	0.44^{-1}	1.85 ± 0.02	4.1 ± 0.4	0.22 - 0.45
3C 279	FSRQ	0.536	2.22 ± 0.02	3.03 ± 0.9	0.1 - 0.35

power law in source spectrum?

Sources for probing the EBL

- "typical" blazar SED: synchrotron peak inverse Compton peak
- SSC model: generally does not allow precise prediction of IC peak!

Methods I: no exponential rise!

- consider range of EBL scenarios with different near-IR, mid-IR far-IR intensities
- consistent with limits (2005)
- use to unfold absorption-corrected blazar spectra
- exponential rise: → EBL intensity is too high ¥

Methods I: no exponential rise!

excess near-IR background light (NIRBL): incompatible with "typical" blazar spectrum!

Method II: hardness limit $\Gamma > 1.5$

- EBL intensity near-IR (1 4 μm) is constrained by allowing absorption-corrected spectra with Γ > 1.5 only!
- strong upper limit in near-IR: vI_v (1-2 μ m) < 14 ± 0.4 nW/m²/sr
- dependents on assumed intrinsic source spectrum! ($\Gamma \sim 1.2$ Fermi spectra!)

More comprehensive analysis is given in Mazin, D. & Raue M., A&A, 471, 439 (2007)

- simultaneous EBL constraints in near-IR & mid-IR
- requires distant sources ($z \sim 0.1 0.3$) with hard spectra
- Fermi spectral index used to set upper limit in near-IR
- use Fermi spectra combined with multi-TeV spectra

Method III, part II: 1 TeV break

- shape of EBL may produce unique imprint in TeV spectra
- effect would be very strong in purely thermal photon field
- strength depends on ratio of near-IR to mid-IR
- constant tau (1 10 TeV): the observed spectrum \approx intrinsic source spectrum

Method III, part II: 1 TeV break

12 blazars: z ~ 0.04 – 0.186

Method III: part I+II (Data)

- part I and part II are "orthogonal"
- constrain near-IR to mid-IR ratio!
- considering lower limits (direct) in mid-IR, also constrains absolute level!

Method III:

Detection of EBL Imprint by Fermi

Status of EBL measurements (2013)

Future

What else might we uncover?

If γ -ray measurements, galaxy counts & direct detections <u>converge</u> we are done!

Non-convergence

- a) EBL from γ-rays >> EBL from resolved galaxy counts
 → diffuse component
- b) EBL from γ -rays violates EBL from direct observations \rightarrow secondary γ -rays play an important role

Signatures from the EBL & ALPs

Signatures from the EBL & ALPs

Signatures from Cosmic Cascades

- requires $B < 10^{-16} G$
- secondary γ -ray fluxes from cosmic ray cascade can only vary slowly (testable) alternatively
- e[±] could cool rapidly due to plasma-beam instability in IGM (Broderick et al., ApJ, 22, 152 (2012))

Summary

Detection of UV/optical EBL signature by Fermi with ~ 150 BL Lacs

- TeV γ-ray data provide strong constraints to the near-IR and mid-IR
- Range of methods (assumptions) yield comparable results
- Tension in mid-IR: between EBL from γ-ray data and galaxy LF estimate
- Convergence of direct EBL and γ-ray opacity measurements required to

rule out non-standard EBL contributors and/or secondary γ-ray scenarios

Thank You!

