The Whipple AGN Era

John Quinn

Active Galactic Nuclei

Early Targets

OGG 2.7-3

264

Search for γ-rays from M31 and other extragalactic objects
M.F. Cawley ${ }^{1}$, D.J. Fegan ${ }^{1}$, K. Gibbs ${ }^{2}$, P.W. Gorham ${ }^{3}$, R.C. Lamb ${ }^{4}$, D.F. Liebing ${ }^{4}$, N.A. Porter ${ }^{1}$, V.J. Stenger ${ }^{3}$, T.C. Weekes ${ }^{2}$

DJFGGAN
19TH INTERNATIONAL COSMIC RAY CONFERENCE

LA JOLLA, USA AUGUST 11.23, 1985
COR:FERENCE PAPERS
OG
SESSIONS
VOL. 1

TABLE 1.

Object	RA	Dec	Class	\underline{z}	1imit (A)	$11 \mathrm{mit}(\mathrm{B})$
NGC1275	0319	+4125	SEYFERT	. 017	$\overline{1.2 E-9}$	9.5E-11
PKS0735+17	0735	+1749	BL LAC	. 424	1.7E-10	$6.9 \mathrm{E}-11$
PKS0736+01	0736	+0144	BL LAC		1.3E-11	1. $5 \mathrm{E}-10$
0J287	0852	+20 18	BL LAC	. 306	$4.8 \mathrm{E}-10$	1.2E-10
PKS0 906+01	0906	+01 34	BL LAC		3.1E-10	7.1E-11
0K222	0913	+29 50	BL LAC		3.7E-10	1. 3E-10
3C232	0955	+32 38	QSO	. 53	1.3E-10	1.3E-10
X1052+607	1052	+60 42	BL LAC		3.6E-12	$9.2 \mathrm{E}-11$
MK421	1101	$+38$	BL LAC	. 030	2.3E-10	6.3E-11
NGC4 151	1209	+39 30	SEYFERT	. 003	3.0E-10	1.9E-10
0N3 25	1217	+30 12	BL LAC		4.08-10	1.1E-10
O N2 31	1219	+28 30	BL LAC		2.6E-10	1.1E-10
3 C 273	1228	+02 09	QSO	. 158	3.6E-10	1.7E-10
M87	1230	+1229	normal	. 003	6.0E-10	$8.3 \mathrm{E}-11$
3 C 279	1253	-05 31	Qso	. 538	$4.6 \mathrm{E}-10$	$2.0 \mathrm{E}-10$
0Q208	1405	+28 41	SEYFERT		2.4E-10	7.7E-11
MK501	1652	+3948	BL LAC	. 034	2.5E-10	1.8E-10
IZW186	1727	+50 12	BL LAC	. 055	1.6E-10	2.0E-10

Early Targets

OGG 2.7-3

264

Search for γ-rays from M31 and other extragalactic objects
M.F. Cawley ${ }^{1}$, D.J. Fegan ${ }^{1}$, K. Gibbs ${ }^{2}$, P.W. Gorham ${ }^{3}$, R.C. Lamb ${ }^{4}$,
D.F. Liebing ${ }^{4}$, N.A. Porter ${ }^{1}$, V.J. Stenger ${ }^{3}$, T.C. Weekes ${ }^{2}$

DJFGGAN

19TH INTERNATIONAL COSMIC RAY CONFERENCE
 LA JOLLA, USA AUGUST 11.23, 1985

CON.FERENCE PAPERS

06
SESSIONS
VOL. 1

TABLE 1.

Object	RA	Dec	Class	$\underline{2}$	1imit (A)	$11 \mathrm{mit}(\mathrm{B})$
NGCL275	0319	+4125	SEYFERT	. 017	1.2E-9 -	9.5E-11
PKS0735+17	0735	+1749	BL LAC	. 424	1.7E-10	$6.9 \mathrm{E}-11$
PKS0736+01	0736	+0144	BL LaC		1.3E-11	1.5E-10
0J287	0852	+2018	BL LAC	. 306	4.8E-10	1.2E-10
PKS0 906+01	0906	+01 34	BL LAC		3.1E-10	$7.1 \mathrm{E}-11$
0K222	0913	+29 50	BL LAC		3.7E-10	1.3E-10
3C232	0955	+32 38	QSO	. 53	1.3E-10	1.3E-10
X1052+607	1052	+60 42	BL LAC		3.6E-12	$9.2 \mathrm{E}-11$
MK421	1101	+38	BL LAC	. 030	2.3E-10	6.3E-11
NGC4151	1209	+39 30	SEYFERT	. 003	3.0E-10	1.9E-10
ON325	1217	+30 12	BL LAC		4.08-10	1.1E-10
O1231	1219	+28 30	BL LaC		2.6E-10	$1.1 \mathrm{E}-10$
3 C 273	1228	+02 09	QSO	. 158	$3.6 \mathrm{E}-10$	1.7E-10
M87	1230	+1229	NORMAL	. 003	6.0E-10	$8.3 \mathrm{E}-11$
3C279	1253	-05 31	QSo	. 538	4.6E-10	$2.0 \mathrm{E}-10$
0Q208	1405	+28 41	SEYFERT		2.4E-10	7.7E-11
MK 501	1652	+39 48	BL LAC	. 034	2.5E-10	1.8E-10
IZW186	1727	+50 12	BL LAC	. 055	1.6E-10	2.0E-10

Early Targets

OGG 2.7-3

264

Search for γ-rays from M31 and other extragalactic objects
M.F. Cawley ${ }^{1}$, D.J. Fegan ${ }^{1}$, K. Gibbs ${ }^{2}$, P.W. Gorham ${ }^{3}$, R.C. Lamb ${ }^{4}$,
D.F. Liebing ${ }^{4}$, N.A. Porter ${ }^{1}$, V.J. Stenger ${ }^{3}$, T.C. Weekes ${ }^{2}$

DJFGGAN
19TH INTERNATIONAL COSMIC RAY CONFERENCE

LA JOLLA, USA AUGUST 11-23, 1985
COR:FERENCE PAPERS
OG
SESSIONS
VOL. 1

37-pixel camera

TABLE 1.

Object	RA	Dec	Class	\underline{z}	1imit (A)	11mit (B)
NGCl275	0319	+4125	SEYFERT	. 017	1.2E-9 -	9.5E-11
PKS0735+17	0735	+1749	BL LAC	. 424	1.7E-10	6.9E-11
PKS0736+0D	0736	+0144	BL LaC		1.3E-11	1.5E-10
OJ287	0852	+2018	BL LAC	. 306	4.8E-10	1.2E-10
PKSO906+01	0906	+01 34	BL LAC		3.1E-10	$7.1 \mathrm{E}-11$
0K222	0913	+29 50	BL LAC		$3.7 \mathrm{E}-10$	1.3E-10
3C232	0955	+32 38	QSO	. 53	1.3E-10	1.3E-10
X1052+607	1052	+60 42	BL LAC		3.6E-12	$9.2 \mathrm{E}-11$
MK421	1101	+38	BL LAC	. 030	2.38-10	$6.3 \mathrm{E}-11$
NGC4151	1209	+39 30	SEYFERT	. 003	3.0E-10	1.9E-10
ON3 25	1217	+30 12	BL LAC		4.08-10	1.1E-10
O1231	1219	+28 30	BL LaC		2.6E-10	1.1E-10
3C273	1228	+02 09	QSO	. 158	$3.6 \mathrm{E}-10$	1.7E-10
M87	1230	+1229	NORMAL	. 003	6.0E-10	8.3E-11
3C279	1253	-05 31	QSo	. 538	4.6E-10	$2.0 \mathrm{E}-10$
0Q208	1405	+28 41	SEYFERT		2.4E-10	7.7E-11
MK 501	1652	+3948	BL LAC	. 034	2.5E-10	1.8E-10
IZW186	1727	+50 12	BL LAC	. 055	1.6E-10	2.0E-10

[992: Markarian 42 |

- 109-pixel camera
- 2nd TeV source and first extragalactic TeV source detected with the IACT.
- 7.5 hrs of observations between March and June yielded a 6.3σ detection.
- Flux 0.3 times that of Crab Nebula - incredible luminosity if isotropic.

Punch et al., I 992

[992: Markarian 42|

- I09-pixel camera
- 2nd TeV source and first extragalactic TeV source detected with the IACT.
- 7.5 hrs of observations between March and June yielded a 6.3σ detection.
- Flux 0.3 times that of Crab Nebula - incredible luminosity if isotropic.

GAMMA-RAY ASTRONOMY

Catching photons from hell

Francis Halzen

Tife most energetic γ-rays yet discovered from beyond our Galaxy are described by Punch et al. on page 477 of this issue ${ }^{1}$. The source, Markarian 421 , is a giant elliptical galaxy harbouring an acgiant elliptical galaxy harbouring an active nucleus. That a distant source like this can be seen at all in teraelectronvolt $\left(\mathrm{TeV}=10^{12} \mathrm{eV}\right) \gamma$-rays implies that its

This Cerenkov method conveniently becomes operative at a threshold not far above the energy at which satellites become insensitive. The real experimental problem is that γ-ray signals are drowned in a background of showers produced by cosmic ray nuclei. Background showers fortunately differ in two

Halzen, I992

EGRET AGN

NASA's Compton Gamma-Ray Observatory, April I99I - June 2000

EGRET (I00 MeV to ~I GeV) onboard CGRO ultimately detected 93 AGN.

IAU Circular in March 1992 announcing detection of Mrk 421 with EGRET (Michelson et al., I992)

EGRET AGN

NASA's Compton Gamma-Ray Observatory, April I99I - June 2000

EGRET (I00 MeV to ~I GeV) onboard CGRO ultimately detected 93 AGN.

IAU Circular in March I992 announcing detection of Mrk 421 with EGRET (Michelson et al., I992)

- Whipple detection of Markarian 421 significant because:
- it demonstrated AGN emit into the TeV regime.
- Markarian 42I was EGRET's weakest blazar.
- Markarian 421 is a very bright X -ray source.
- Markarian 42 I is the closest blazar.

EGRET AGN

NASA's Compton Gamma-Ray Observatory, April I99I - June 2000

EGRET (I00 MeV to ~I GeV) onboard CGRO ultimately detected 93 AGN.

IAU Circular in March 1992 announcing detection of Mrk 421 with EGRET (Michelson et al., 1992)

- Whipple detection of Markarian 421 significant because:
- it demonstrated AGN emit into the TeV regime.
- Markarian 42I was EGRET's weakest blazar.
- Markarian 421 is a very bright X -ray source.
- Markarian 42 I is the closest blazar.
- I992-I995 Whipple Collaboration targeted 35 AGN, I5 of which had EGRET detections, but with no new detections (e.g. Kerrick et al., I 995).

[993: Markarian 42|?

1002

Out of the Darkness

Discovery of Markarian 421
Who:
Whipple
Punch et al. 1992, Nature, 358, 477 What:

Flux at $\mathrm{E}>500 \mathrm{GeV} \approx 0.3 \mathrm{Crab}$ EGRET source

X-ray selected BL Lac Object
$z=0.031$ (closest BL Lac)

[993: Markarian 42|?

1002

Out of the Darkness

Discovery of Markarian 421 Who:

Whipple
Punch et al. 1992, Nature, 358, 477 What:

Flux at $\mathrm{E}>500 \mathrm{GeV} \approx 0.3 \mathrm{Crab}$ EGRET source

X-ray selected BL Lac Object
$z=0.031$ (closest BL Lac)

The Valley of
 Despair

[994-I995: Markarian 42|

- Markarian 42I detected again.
- Confirmation of TeV emission by HEGRA (Petry et al., I996)
- Highly variable emission: day-scale flares and periods below the sensitivity of the telescope.

Buckley, et al., I 996

[994-|995: Markarian 42]

First multi-wavelength campaigns...

Buckley, et al., I 996

Use of Large Zenith Angle technique to extend the spectral range beyond 5 TeV .

Krennrich, et al., | 1997

1995: Markarian 501 through the drizzle

- Observing program expanded to target
nearby, X-ray bright blazars not necessarily detected by EGRET

I995: Markarian 501 through the drizzle

- Observing program expanded to target nearby, X-ray bright blazars not necessarily detected by EGRET
- Results:
- Ist success: preliminary detection of Markarian 501 in March-May I995.
- Internal collaboration memo....

1995: Markarian 501 through the drizzle

- Observing program expanded to target nearby, X-ray bright blazars not necessarily detected by EGRET
- Results:
- I st success: preliminary detection of Markarian 501 in March-May I995.
- Internal collaboration memo....

I995: Markarian 501 detected

FIG. 3.-Daily gamma-ray rates from Mrk 501; all rates are based on the ON or tracking observations only, and the error bars are increased accordingly.

- Detected at 8σ (On/Off, 38 hr) and 9\% (Tracking, 3 I hr) (Quinn et al., I996)
- Steady (average flux $\sim 8 \%$ that of the Crab nebula) - apart from one night.
- $2^{\text {nd }}$ closest BL Lac.
- Not an EGRET source at the time - detection came later (Kataoka et al., I999)
- first extragalactic gamma-ray source discovered from the ground.
- Confirmation by HEGRA (Bradbury et al., I996)

|995-I997: IES 2344+5|4

- 2nd success of new strategy
- Not an EGRET source
- Signal primarily from one flare night. (60, 60\% Crab flux)
- 3rd closest blazar.

Catanese et al., I 998

1996:The Most Violent Place in the Universe

Markarian 421 extreme flares:

- May 7th:
- flux reaches 10 Crab
- 56σ in 2 hrs
- May I5th:
- flux reaches 5 Crab.

1996:The MostViolent Place in the Universe

Gaidos et al., 1996

- May 7th - doubles in ~ 30 mins (peak at $50 x$ its quiescent state)
- May I5th - from 0 to $25 x$ its quiescent state and back again in 30 mins.
- Implication: relativistically boosted $(\delta>10)$ and compact emission region (<10 light hours)
- May 7th flare witnessed by distinguished guests...

|996:The Most Violent Place in the Universe

The European PhYsical Journal H

Very-high energy gamma-ray astronomy

A 23-year success story in high-energy astroparticle physics

E. Lorenz ${ }^{1}$ and R. Wagner ${ }^{1,2, a}$

5.6 A huge flare from Markarian 421 - a personal episode

In spring 1996, one of us (E.L.) participated in the meeting of the High-Energy Astrophysics Division of the American Astronomical Society in San Diego. Also, Tadashi Kifune was attending. We both asked Trevor Weekes if we could visit the Whipple telescope and see it in operation on our way back after the conference. On May 7 we were at the site. As it was nearly full moon only about one hour of observation time was possible. The students were not very excited to switch on all the necessary instruments for such a short observation time. Nevertheless, Trevor convinced his team to start observations with the telescope, which was then pointed towards Mkn 421. Very surprisingly, the online display events looked mostly like perfect and clean γ-showers occurring at high rate. Normally one would expect that nearly all events to be from hadronic showers, zipping across the camera in all directions, but nearly never pointing to the reference position of Mkn 421 in the camera. I even suspected that the students had decided to show the visitors just Monte-Carlo events of gamma-showers. In order to clarify the situation the data were transmitted via computer link to Ireland and immediately processed. A few minutes later the so-called ALPHA plot (cf. Fig. 9) was sent back showing a huge signal of more than $10-\sigma$ excess for 20 minutes of

[995 - I997: Markarian 50|

Quinn et al., 1999

[995 - |997: Markarian 50|

Quinn et al., 1999

[995 - I997: Markarian 50|

[995 - I997: Markarian 50|

Markarian 50I,
(Kranich et al., 1999)

|997: Markarian 50|

Detections by:

- CAT (Punch, I997)
- the Telescope Array Project (Hayashida et al., 1998)
- TACTIC (Bhat, I997)

[997: Markarian 50|

- Spectrum to $>10 \mathrm{TeV}$

figure from Konopelko, 1999:
- Whipple points (open circles) from Krennrich et al, I999,
- HEGRA points (filled circles)

Aharonian et al, 1999

Markarian 42I: Multiwavelength Variability

Markarian 421, 1998

(from Maraschi et al., 1999; Catanese et al., 1999)

Markarian 421 Flare, March 19, 2001

Jordan et al., 2001

Markarian 42I: Spectal Energy Distribution

Markarian 50I: SED - An Extreme Blazar

HI $426+428$

- Multi-year observations yielded small, consistently positive excess.
- 2000/200 I Whipple Observations motivated by Beppo-Sax X-ray observations that found 4 more Extreme Blazars (Costamante et al., 2000, 200I)
- Whipple detections at $3.3 \mathrm{\sigma}$ (2000) and 5.5 σ (200I) levels.
- Flux max. at $\sim 10 \%$ Crab.
- Spectrum steeper than Crab

Horan et al, 2002

The TeV Blazars c. 2002

TABLE 6

Extragalactic TeV Sources (Catanese \& Weekes 1999)

Source	Type	z	Discovery	Group	EGRET
Mrk 421	HBL	0.031	1992	Whipple ${ }^{\text {a }}$	yes
Mrk 501.	HBL	0.034	1995	Whipple ${ }^{\text {b }}$	yes
1ES $2344+514$......	HBL	0.044	1997	Whipple ${ }^{\text {c }}$	no
1ES 1959 + 650.......	HBL	0.048	1999	Telescope Array ${ }^{\text {d }}$	no
PKS 2155-304	HBL	0.116	1999	Durham ${ }^{\text {e }}$	yes
H1426 + 428..........	HBL	0.129	2001	Whipple ${ }^{\text {f }}$	no
3C 66A................	LBL	0.444	1998	Crimeag	yes
BL Lacertae	LBL	0.069	2001	Crimea ${ }^{\text {h }}$	yes

a Punch et al. 1992.
${ }^{\text {b }}$ Quinn et al. 1996.
${ }^{\text {c C Catanese et al. } 1998 .}$
${ }^{\mathrm{d}}$ Nishiyama et al. 2000.
${ }^{\mathrm{e}}$ Chadwick et al. 1999.
${ }^{f}$ Horan et al. 2000, 2001a, 2001b.
${ }^{\mathrm{g}}$ Neshpor et al. 1998.
${ }^{\mathrm{h}}$ Neshpor et al. 2001.

Blazar Classification

Two Types of Blazars?

SEDs of Blazars form a continuum

Science from TeV Blazar Detections

Spectral Variability \& Cutoffs (e.g. Markarian 42I, Krennrich et al., 2003)

Photon Energy (TeV)

Extragalactic Background Light:TeV - EBL Coupling $\gamma_{T e V}+\gamma_{I R} \rightarrow e^{+}+e^{-} J_{O b s}\left(E_{\gamma}\right)=J_{0}\left(E_{\gamma}\right) e^{-\tau_{\gamma \gamma}\left(E_{\gamma}, z\right)}$

Ressell \& Turner, 1989, FERMILAB-Pub-89/214-A $\log (\mathrm{E} / \mathrm{eV})$

Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies

S.D. Biller, ${ }^{1}$ A.C. Breslin, ${ }^{2}$ J. Buckley, ${ }^{3}$ M. Catanese, ${ }^{4}$ M. Carson, ${ }^{2}$ D. A. Carter-Lewis, ${ }^{4}$ M.F. Cawley, ${ }^{5}$ D. J. Fegan, ${ }^{2}$
J.P. Finley, ${ }^{6}$ J.A. Gaidos, ${ }^{6}$ A.M. Hillas, ${ }^{7}$ F. Krennrich, ${ }^{4}$ R.C. Lamb, ${ }^{8}$ R. Lessard, ${ }^{6}$ C. Masterson, ${ }^{2}$ J.E. McEnery, ${ }^{9}$
B. McKernan, ${ }^{2}$ P. Moriarty, ${ }^{10}$ J. Quinn, ${ }^{11}$ H. J. Rose, ${ }^{7}$ F. Samuelson, ${ }^{4}$ G. Sembroski, ${ }^{6}$ P. Skelton, ${ }^{7}$ and T.C. Weekes ${ }^{11}$

Conclusions

- The discovery by Whipple of TeV gamma-ray emission from blazars opened a new window on the extragalactic universe and revitalised AGN science.
- The Whipple discoveries were instrumental in establishing TeV astronomy as a viable and important branch of astronomy.
- It was incredibly exciting and a privilege to be at the Whipple observatory during the 1990s.
- Trevor's drive, leadership, encouragement, optimism and support were critical to the successes that were achieved.

The IOm as a Blazar Monitor

- Once VERITAS operational the IOm used to monitor the classical TeV Blazars.
- Markarian 42I: I6 years (October I995 to May 20II) monthly averages:

