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Coulomb drag between two quantum wires is exponentially sensitive to the mismatch of their electronic
densities. The application of a magnetic field can compensate this mismatch for electrons of opposite spin
directions in different wires. The resulting enhanced momentum transfer leads to the conversion of the
charge current in the active wire to the spin current in the passive wire.
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A set of unusual transport phenomena in which electron-
electron interactions induce transfer of momentum be-
tween distinguishable systems of fermions is known as
the Coulomb drag effect. Conventional Coulomb drag [1]
occurs between two spatially separated conductors. In the
standard setup, see Fig. 1, dc current I1 flows through the
active conductor 1 inducing a voltage drop V2 in the
passive conductor 2. Quantitatively, the effect is character-
ized by the dimensionless drag resistance

 Rd � lim
I1!0
�e2=h�V2=I1: (1)

Unlike the usual two-terminal resistance, Rd is sensitive to
electronic correlations within the conductors. Therefore,
Coulomb drag effect provides an important tool to probe
these correlations. Coulomb drag was observed experi-
mentally in two-dimensional bilayers [2] and, more re-
cently, in one-dimensional quantum wires [3].

A different Coulomb drag-type effect, the spin drag,
originates in momentum transfer between spin-up and
spin-down electrons within the same conductor [4]. The
spin drag provides a nondissipative mechanism of relaxa-
tion of a pure spin current. Interactions are therefore de-
structive for spin currents. Because robust generation of
spin currents is important in view of possible applications
in spintronics [5], the limitations arising due to the spin
drag effect are now a subject of active research [4,6].

In this Letter, we demonstrate that interactions can
induce spin current rather than suppress it. This is possible
in a novel type of Coulomb drag effect, interaction-induced
transfer of momentum between spin-up and spin-down
electrons that belong to separate conductors. We show
that this effect can be realized in the standard setting of
Coulomb drag between two clean quantum wires in a
magnetic field [3]. While the electric current I2 in the
passive wire is zero, the spin current I2s � I2" � I2# can
flow [7], i.e., the system acts as a charge current to spin
current converter. The efficiency of the conversion can be
characterized by the ratio

 C � I2s=I1: (2)

Below we show that the drag resistance Rd has a maximum
at a certain value B0 of Zeeman energy. For

 maxfT; jB� B0jg � B0 (3)

the conversion efficiency C� Rd [see Eqs. (18) and (23)],
and the dependence of Rd on temperature T is described by
a power law with the exponent depending on the interac-
tion strength, see Eq. (15). For sufficiently strong interac-
tion the power-law dependence crosses over to Rd � 1 at
very low temperatures. We start with a heuristic explana-
tion of the origin of the effect, and then proceed with the
derivation of the results.

If the electronic densities in the wires n1 and n2 were
equal, the dominant contribution to Rd at low temperatures
would come from processes with large momentum transfer
between the wires (backscattering), which may result in a
finite Rd in the limit T ! 0 [8–10]. In reality, however, the
densities are always slightly different,

 jn1 � n2j � n; n � �n1 � n2�=2

(let us assume that n1 < n2), so that the corresponding
Fermi momenta k1;2 � �n1;2=2 are different as well. In
this case, the backscattering contribution to Rd is exponen-
tially suppressed at low temperatures [11,12].

The suppression is easy to understand as follows. To the
lowest order in the strength of the interwire interaction, the
backscattering contribution to Rd can be written as [12,13]
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FIG. 1. Equivalent circuit for measurement of Coulomb drag
between two quantum wires. Coulomb drag manifests itself in
the appearance of the potential difference V2 between the ends of
the open circuit of which the passive wire 2 is a part (V2 is
positive if it has the polarity indicated).
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Here L is the length of the region in which the wires
interact with each other (see Fig. 1), U2k is 2k-Fourier
component of the interwire interaction potential [with k �
�k1 � k2�=2 � �n=2], and S2k

i �q;!� � Si�q;!�jq�2k is the
Fourier transform of the dynamic structure factor Si�x; t� �
h�i�x; t��i�0; 0�i (here �i is the local density operator for
wire i).

At T � 0 and q� 2k, the two structure factors overlap
only at !> T0 � vjk1 � k2j, where v � �n=2m is the
‘‘average’’ Fermi velocity, see Fig. 2(a). Because of the
factor e�!=T in Eq. (4), this translates to the activational
temperature dependence of the drag resistance, Rd /
e�T0=T . Although at any T > 0 the structure factors are
finite for all ! and q, the ‘‘leakage’’ of the spectral weight
beyond the boundaries indicated in Fig. 2(a) affects only
the power-law prefactor in the expression for Rd.

With the backscattering contribution exponentially sup-
pressed, Rd is dominated by small momentum transfer and
vanishes at T ! 0 as Rd / T5 [12]. In principle, the den-
sities can be fine tuned to be equal, which would increase
the backscattering contribution. Another possibility, which
leads to spin current generation, is to place the system in a
magnetic field.

In a field the single-particle energies �k� of the spin-up
(") and spin-down (#) electrons (labeled by � � �1) in-
clude Zeeman contribution ��k� � �B=2. As a result,
ni# > ni", and the Fermi momenta are

 ki� � ki � ��k=2 (5)

with �k�B� � B=v (see below). For each wire, the low-
energy sector in S2k

i �q;!� then splits in two, located at q �
2ki�, see Fig. 2(b). The scale T0 is B dependent and
vanishes at a certain field B0, T0�B� � jB� B0j [see
Eq. (11) below]. At jB� B0j & T, the backscattering con-
tribution to Rd is no longer exponentially suppressed and
dominates at sufficiently low temperatures. Moreover, in
the regime (3) the main contribution to the integral in
Eq. (4) comes from the overlap of S1# and S2". In other
words, almost all of the momentum is transferred from
spin-down electrons in the active wire to spin-up electrons
in the passive one. Therefore, both Rd and C will have a
maximum at B � B0.

We evaluate Rd and C in the regime (3) using the
bosonization technique [14]. At energies well below B0,

which in turn is small compared with the Fermi energy �F,
the wire i (i � 1, 2) is described by the Hamiltonian

 Hi �
X
m

vm
2

Z
dx	g�1

m �@x’im�2 � gm�@x#im�2
; (6)

where m � c, s labels the charge (spin) modes, and the
bosonic fields satisfy

 	’im�x�; #i0m0 �y�
 � �i=2��ii0�mm0sgn�x� y�: (7)

For simplicity, we assume that both wires are described by
the same set of parameters fvm; gmg. These parameters are
related to each other according to

 gc � v=vc; gs�B0� � 1� 	2 ln��F=B0�

�1 (8)

(so that 1� gc � gs � 1> 0 for B0 � �F), and the ve-
locities vc > v and vs < v can be further expressed in
terms of the interaction within the wires [14].

Fermion operators in the bosonic representation are

  i���x� � �i��
������
p0
p

ei�		i���x��ki�x
: (9)

Here � � �1��1� for the right (left) moving fermions,
�i�� � �yi�� are real (Majorana) fermions that satisfy
f�i��;�i0�0�0 g � 2�ii0���0���0 (these operators enforce
correct anticommutation relations between different fermi-
onic species), p0 � B0=v is the high-momentum cutoff,
and 	i�� is a linear combination of ’im, #im, which in the
leading order in B0=�F � 1 is given by [15]

 	i�� �
���������
�=2

p
�’ic � �#ic � �’is � ��#is�: (10)

Fermi momenta ki� in Eq. (9) are given by Eq. (5) with
�k�B� � gsB=vs, and T0�B� (see Fig. 2) at B! B0 is

 T0�B� � gsjB� B0j; B0 � vsjk2 � k1j (11)

[B0 is the root of the equation gs�B�B � vsjk2 � k1j].
With the help of Eq. (9), the 2k-harmonic of the density

operator �2k
i �

P
��

2k
i� is written as

 �2k
i� � p0�i� exp	i

�������
2�
p

�’ic � �’is� � 2iki�x
 � H:c:;

where �i� � �i;�1;��i;�1;�. Since the Hamiltonian (6) is
quadratic, evaluation of the structure factor is straightfor-
ward [14] and yields Si�x; t� �

P
�Si��x; t� with

 Si��x; t� � 2p2
0 cos�2ki�x�

Y
�;m

�
T=�2p0vm�

sinh��T
�m�

�
gm=2

;

where 
�m � x=vm � ��t� i0�.
As discussed above, the condition (3) ensures that the

main contribution to the integral in Eq. (4) comes from the
nonvanishing overlap of S1# and S2"; the remaining contri-
butions are suppressed as / exp��B0=T�. In order to
evaluate Rd, it is convenient to convert Eq. (4) to space-
time representation,

 Rd=L � ��=2�U2
2k

Z 1
�1

dx dt�it�S1�x; t�S2�x; t�: (12)

Substituting here S1# for S1 and S2" for S2, we find

 

FIG. 2. (a) Regions in (!, q) plane where S1;2 > 0 at T � 0
and q� 2k. The dark triangle indicates the region where S1S2 >
0. (b) In a magnetic field, the low-energy sectors in Si�q;!� split
in two, which leads to the decrease of T0, the minimal energy at
which S1 and S2 overlap at T � 0.
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 Rd � n�2
2kL

B0

�F

�
jB� B0j

B0

�
4g�3

F
�
gsjB� B0j

T

�
; (13)

where �2k � U2k=2�v and g � �gc � gs�=2. The function
F�z� in Eq. (13) is given by

 F�z� �
ZZ �z=2�3�4g exp�2iz�=��d�d�Q

m
	cosh�vsvm �� �� cosh�vsvm �� ��


gm

�

8><
>:
z3�4g; z� 1;
ze�z; 1� z� z0;
z1�2gce�z; z� z0;

(14)

where z0 � gc��=2��vs=vc� tan	��=2��vs=vc�
 [so that
z0 � �1� gc�

�1 � 1 for weak interaction]. In deriving
Eqs. (13) and (14) we changed the integration variables
in (12) to � � �Tx=vs and � � �Tt, shifted the path of
integration over � off the real axis by �i�=2, and eval-
uated the resulting integral in the saddle-point approxima-
tion. According to Eqs. (13) and (14), and in agreement
with the discussion above, Rd�B� has a narrow peak of the
width �B� T � B0 at B � B0. Its height is given by

 maxfRd�B�g � n�2
2kL�B0=�F��T=B0�

4g�3: (15)

Note that the difference between vs and vc is important
only at large jB� B0j * T=�1� gc�. In the opposite limit
one can set vs=vc ! 1, which yields F�z� � j��g�
iz=2��j4=�2�2g�, in agreement with Eq. (14); the corre-
sponding T dependence is exactly the same as that for the
drag between two spinless wires [11,16].

In order to relate the conversion efficiency (2) to the drag
resistance (15), we note that as far as the passive wire is
concerned, in the regime (3) Coulomb drag induces the
electric field that couples to spin-up electrons only. The
effect of this field can be described by adding to the
Hamiltonian of the passive wire a term

 �H2�e
Z
dx�d�x��2"�x��e

Z
dx

�d

2
��2c��2s�; (16)

where �d�x� is drag-induced potential, and �2c and �2s are
charge and spin densities. The potential �d�x� changes
within the region of the length L in which the wires interact
with each other. Assuming that the wires are long, L0 � L,
the charge and spin currents in response to �H2 can be
written as [17]

 I2c��2e2=h�gc��d=2; I2s��2e2=h�gs��d=2; (17)

where ��d � �d��1� ��d�1�. In writing Eq. (17) we
took into account the renormalization of the corresponding
conductances by interactions within the wire [17].

On the other hand, the electrostatic potential difference
V2 induces charge current IV � �2e2=h�V2. Here we as-
sumed that the interactions are efficiently screened within
the leads and that the contacts between the leads and the
wires are reflectionless; the corresponding conductance is
not affected by the interactions [18]. The condition of
vanishing of the total electric current, I2 � IV � I2c � 0,

then yields ��d � �2V2=gc. Equations (1), (2), and (17)
now give

 C � I2s=I1 � 2�gs=gc�Rd: (18)

Thus, under the conditions (3) the dependence of conver-
sion efficiency C on B and T is indeed the same as that of
the drag resistance Rd, as asserted above.

Equation (18) does not account for the reduction of Is
due to the momentum transfer between the two spin sub-
systems within the passive wire (spin drag). Indeed, in the
framework of the Tomonaga-Luttinger model (6) the only
source of spin drag is the backscattering in the spin sector,
which at T � B is exponentially suppressed. The domi-
nant contribution to spin drag then comes from the pro-
cesses with small momentum transfer. Accounting for
these processes requires explicit consideration of the non-
linearity of the electronic spectrum [12]. Proceeding along
the lines of [12], we found the corresponding correction to
the spin current I2s at T � B and in the lowest nonvanish-
ing order in the interaction strength,

 �I2s=I2s ��nL0�1� gc�4�B=�F�4�T=B�5: (19)

In writing Eq. (19) we took into account that Fermi veloc-
ities for spin-up and spin-down electrons differ by �v�
B=k� v. The correction (19) is small and does not affect
the validity of Eq. (18).

The above consideration is based on the perturbative
expression Eq. (4). In order to analyze the relevance of
the higher-order contributions, we introduce new fields

 
c � 2�1=2�’1c � ’2c�; 
s � 2�1=2�’1s � ’2s�;

and similarly defined �c and �s. The fields obey the com-
mutation relations analogous to Eq. (7), and their dynamics
is governed by the Hamiltonian H �

R
dxH with

 

H �
X
m

vm
2
	g�1
m �@x
m�

2 � gm�@x�m�
2
 � 2v�0�@x
c�

2

� 4�v�2kp2
0 cosf

�������
4�
p

�
c �
s� � 2K0xg: (20)

The second and the third terms here describe, respectively,
the forward and backward scattering between the spin-up
electrons in wire 2 and the spin-down electrons in wire 1,
with �0 defined similarly to �2k in Eq. (13), and K0 �
T0�B�=vs.

The forward scattering term in Eq. (20) leads to small
corrections to vc and gc, �gc=gc � ��vc=vc � 2g2

c�0 �
1, which modify the exponent in Eqs. (13)–(15), g! g�
�gc=2. The backscattering, however, can be relevant in the
renormalization group sense [19]. For L! 1 and K0 ! 0
it then results in the opening of a gap

 �� B0�
1=�2�2g�
2k (21)

in the excitation spectrum. The gapped state is the ‘‘zig-
zag’’-ordered state formed by the spin-down electrons in
wire 1 and the spin-up electrons in wire 2.
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The gap remains open for finite K0 as long as the energy
gained due to its formation is sufficient to overcome the
cost of the adjustment of the densities needed to form the
zigzag order. In the context of quantum wires such adjust-
ment (known as commensurate-incommensurate transi-
tion) was discussed recently in [11,20]. The adjustment
takes place at not too large K0, K0 <Kc ��=v, and
occurs even when L is finite. As a result, the width �B of
the peak in Rd�B� saturates at low temperatures,

 �B�maxfT;�g: (22)

For L� v=� the zigzag order can not be formed and
Eq. (15) is applicable. In this case maxfRd�B�g � 1 for all
T. The higher-order contributions become important for
L * v=� and at T & � [8–11]. While finding the detailed
dependence Rd�T� in this regime is beyond the scope of
this Letter, the limiting values of Rd and C at T ! 0 can be
found as follows. Imagine that the two wires are connected
to noninteracting reservoirs and a bias is applied only to the
electrons with spin � in wire i. The resulting current of
electrons with spin�0 in wire i0 is Ii0�0 � Gi0�0;i�Vi�, where
Gi0�0;i� � Gi�;i0�0 is the corresponding conductance. At
T ! 0 the spin-up electrons in wire 2 are ‘‘locked’’ with
the spin-down electrons in wire 1, and we expect that
G1#;1#; G2";2"; G1#;2" ! e2=2h. At the same time,
G1";1"; G2#;2# ! e2=h, while G1";2# ! 0. Setting Vi� � Vi,
Ii � Ii" � Ii#, we find

 Rd ! 1=4; C! 1=2: (23)

To conclude, we showed that in the presence of the
applied magnetic field the standard Coulomb drag mea-
surement setup acts as a charge current to spin current
converter. Both the drag resistance and the conversion
efficiency exhibit a maximum at a certain value of the field
controlled by the density mismatch between the wires.

Our results are applicable for long (kL0 � 1) ballistic
quantum wires. The wires studied in [3] exhibit a well-
defined conductance quantization, which guarantees that
the elastic mean free path exceeds the length of the wires
L0. While it is very plausible that kL0 � 1 for at least
some of the samples studied in [3] (with L0 ranging from
0:4 to 4 �m), the density of electrons in these wires is
difficult to estimate. Fortunately, such an estimate is avail-
able for the coupled-wire system studied in [21]: L �
L0 � 10 �m and kL0 � 103. Although the experiments
[21] focus on the momentum-resolved tunneling, the
same system can be employed to study the Coulomb drag
effect as well. For this system, the typical density mis-
match jn1 � n2j=n� 10�2 corresponds to B0 � 1 K
(which amounts to the applied field of �3 Tesla), hence
the regime (3) is well within the reach of the experiments.
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