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The search for elementary excitations with fractional quantum numbers is a central challenge in modern condensed-matter physics.
It has long been speculated that two-dimensional frustrated magnets might support quantum disordered states with neutral spin-1/2
excitations known as spinons. Despite decades of search, however, no clear experimental examples have been found. We explore the
possibility for several materials using a realistic model, the spin-1/2 spatially anisotropic frustrated Heisenberg antiferromagnet in
two dimensions. Here, we derive an effective Schrödinger equation valid in the weak interchain coupling regime. The dynamical spin
correlations from this approach agree quantitatively without fitting parameters with inelastic neutron measurements of the triangular
antiferromagnet Cs2CuCl4. In such antiferromagnets, the spectrum is composed of an incoherent continuum arising from the effects
of one-dimensional spinons of individual chains, and a sharp dispersing peak, due to coherently propagating ‘triplon’ bound states of
two spinons. We argue that triplons are generic features of spatially anisotropic frustrated antiferromagnets, which arise because the
bound spinon pair lowers its kinetic energy by propagating between chains.

The emergence of particles with fractional quantum numbers is
known to be quite generic in one-dimensional (1D) conductors
and magnets1, for example, in 1D quantum wires and carbon
nanotubes. The spin excitation carrying a fractional quantum
number, spin 1/2, is referred to as a spinon2,3. In contrast, in
dimensions higher than one, the elementary excitation above
a magnetically ordered state is a magnon, which carries spin
1 (refs 4,5). Nevertheless, fractionalization has been repeatedly
identified theoretically as a possible phenomenon underlying
unusual experimental behaviour of strongly correlated materials
in two and three dimensions and zero magnetic field, such as
high-temperature superconductors, heavy fermions and frustrated
quantum magnets. Resonating valence bond theories6,7 and
slave-particle approaches8–10 have been developed to describe
fractionalization in dimensions greater than one11. However, these
approaches remain largely unproved. For decades, considerable
effort has been devoted to the search for such exotic behaviours12,13,
and only recently, experimental indications of fractionalized
particles14,15 and disordered ground states16–19 have been observed
in some 2D frustrated antiferromagnets.

Here, we consider how spinons may appear in a 2D magnet
as descendents of their 1D counterparts. Our focus is the spin-1/2
spatially anisotropic antiferromagnetic Heisenberg model defined
by the following hamiltonian:

H =

∑
x,y

(
JSx+1,y + J ′

1Sx,y+1 + J ′

2Sx+1,y+1 + J ′

3Sx−1,y+1

)
·Sx,y , (1)

where Sx,y is the spin-1/2 operator at site (x,y). Here, J denotes
the intrachain coupling and J ′

1, J ′

2 and J ′

3 are interchain couplings as
shown in Fig. 1. We take J , J ′

1, J ′

2 > 0, reflecting antiferromagnetic

x

y
 

J

J1′

J3′ J2′

Figure 1 Lattice structure and coupling constants J ′

1, J
′

2, J
′

3 and J. The circles
and lines denote sites and bonds, respectively.

interactions, focusing on the frustrated case J ′

1 = J ′

2 + J ′

3. The main
result here is a physical picture of the magnetic excitations in
this situation, which enables a parameter-free calculation of the
inelastic magnetic structure factor S(k,ω) for the full range of
energy transfers with ω varying from essentially zero to several
times J . The result is valid provided only J ′

a/J is not too large, and
indeed reveals characteristic features of spinon excitations.

One strong motivation to study this model comes from
experiments on the material Cs2CuCl4, a spin-1/2 Heisenberg
antiferromagnet on a spatially anisotropic triangular lattice. This
corresponds to equation (1) with J ′

1 = J ′

2 ≡ J ′ and J ′

3 = 0, and the
measured anisotropy J/J ′

≈ 3 (ref. 20). The spectral weight in
the measured dynamical structure factor, S(k,ω), is dominated
by a broad continuum, extending up to energy above 3J , with
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Figure 2 Dynamical structure factor S (k,ω ) for J ′ (k) < 0 and J ′ (k) > 0. a,b, Density plot of S (k,ω ) for J ′

2 = J ′

3 = J ′

1/2= 0.24J at ky =π (a) and ky = 0 (b).
The insets show the plots at kx =π/2.

the usually strong magnon peak appearing uncharacteristically
insignificant. The spectral tail for some directions in momentum
space is well fitted by a power-law form14,15. Following this
observation, numerous theories have attributed the behaviour to
fractionalized excitations of exotic 2D critical and/or spin-liquid
states21–26. Other studies have compared the data with anharmonic
spin-wave theory. The latter calculations reproduce the peak
dispersion (but not the lineshape) in Cs2CuCl4, only, however, if
the exchange parameters are substantially modified by hand14,15,27,28.
Unbiased numerical series-expansion calculations do reproduce the
peak dispersion quantitatively29,30.

Here, we argue that the spectra in Cs2CuCl4 indeed reflect
spinons as originally suggested, but that these spinons are
descendents of the 1D excitations of the chains formed by the
strong J bonds, and not characteristic of any exotic 2D state. A
popular argument against this notion has been that the peak energy
has substantial dispersion in the direction transverse to the chains.
We show that contrary to naı̈ve expectations, such dispersion does
appear in a quasi-1D approach. The basic physics involved is the
binding of two spinons into a delocalized and dispersing spin-
1 pair (triplon). This is driven by kinetic energy, as only a pair
of spinons may hop between chains. Triplon formation leads to
specific signatures in the structure factor, which are indeed present
in the data on Cs2CuCl4.

The appropriateness of the 1D approach is reinforced by several
studies. Ref. 31 has quantitatively described most of the complex
low-temperature phase diagram of Cs2CuCl4 in applied magnetic
fields. It also showed that the frustrated J ′ coupling is ineffective
in establishing long-range order: the characteristic energy scale for
ordering is only of order (J ′)4/J3, much smaller than the bare
interchain exchange J ′. An early indication of this ineffectiveness
appeared in ref. 32, in which a ‘decoupled’ state was suggested.
More recently, the exact diagonalization study in ref. 33 found
that correlations between spins in neighbouring chains remain
extremely weak for J ′

≤ 0.7J .
This suggests that the elementary excitations (spinons) of

independent spin chains are a natural basis. We therefore project
the hamiltonian in equation (1) into the subspace of eigenstates of
the 1D decoupled chains34,35. Each eigenstate can be characterized
by the number of excited spinons, which is always even for
any physical state. Remarkably, truncating to the first non-trivial

approximation of only zero- or two-spinon states reproduces
the main features of the spectrum of such quasi-1D frustrated
antiferromagnets. Note that the two-spinon approximation is not
a low-energy one (unlike the familiar and powerful ‘bosonization’
technique) as it includes spinons with energies reaching up to
πJ/2 � J ′. This is essential for comparison with inelastic neutron
scattering data which extends over this full range15.

The two-spinon states of a single chain are characterized
by two continuous quantum numbers, which can be thought
of either as the momenta kx1, kx2 of the individual (unbound)
spinons, or equivalently, the total momentum kx = kx1 + kx2 and
(excitation) energy ε = εs(kx1) + εs(kx2) of the pair. We use the
latter notation for convenience. The spinon energy follows the des
Cloizeaux–Pearson dispersion, εs(kx) = (πJ/2)|sin(kx)| (ref. 36).
The states can also be characterized by their total spin and Sz

quantum numbers. Only the triplet (s = 1) states are relevant to
the neutron structure factor, and we may specialize without loss
of generality to the Sz

= +1 state, which we denote |kx , ε〉y on
chain y. For the many-chain system, the unperturbed ground state
and two-spinon basis states are given as |G.S.〉0 ≡ ⊗y|0〉y and
|kx ,ε, y〉 ≡ |kx ,ε〉y ⊗y′ 6=y |0〉y′ , respectively. Here, |0〉y denotes the
ground state of the y th Heisenberg chain, of length Lx .

We choose to work with eigenstates of the total 2D momentum
vector k = (kx , ky). Such ky eigenstates are superpositions:
|ε〉k ≡|kx ,ky;ε〉≡ (1/

√
Ly)

∑
y eiky y

|kx ,ε,y〉 (here Ly is the number
of chains). Note that because the two spinons comprising any of
the original basis states always live in the same chain, there is only
one intrinsic transverse momentum ky and not two distinct spinon
momenta in the y direction. Thus, there is only a one-parameter (ε)
set of two-spinon states for each kx ,ky . Therefore, the eigenstates in
this basis take the form

|Ψk〉 =

∫
dε Dkx (ε)ψk(ε)|ε〉k, (2)

where Dkx (ε) = Θ (ω2,u(kx)− ε)Θ (ε−ω2,l(kx))/
√
ω2

2,u(kx)− ε2

is the density of states of the Heisenberg chain, divided by Lx/(2π),
at momentum kx and excitation energy ε (ref. 37) (Θ denotes the
step function). It is restricted to ω2,l(kx) < ε < ω2,u(kx), where
the boundaries of the two-spinon continuum are ω2,l(k) = εs(kx)
and ω2,u(kx) = πJ sin[kx/2]. The wavefunction ψk(ε) defines the
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spread of the eigenstate amongst this continuum. The condition
that |Ψk〉 is an eigenstate of the hamiltonian in the two-spinon
subspace implies the Schrödinger equation:

εψk(ε)+

∫
dε̃Dkx (ε̃)J ′(k)A∗

kx
(ε)Akx (ε̃)ψk(ε̃) = Eψk(ε), (3)

where E is the excitation energy above the ground state
and J ′(k) ≡ 2(J ′

1 cos ky + J ′

2 cos(kx + ky) + J ′

3 cos(kx − ky)) is
the Fourier transform of the interchain exchange interaction.
The matrix element Akx (ε) ≡ (1/

√
2)〈0|S−

−kx ,y|kx , ε〉y , which is
crucial for this study, was obtained exactly in ref. 38 (see the
Supplementary Information).

We solved the integral equation, equation (3), numerically by
carefully discretizing ε to obtain a complete (in the two-spinon
subspace) set of eigenfunctions ψnk (and corresponding states
|Ψnk〉) and energies Enk, with n = 1, . . . , M . The number of
discretized energies M was typically several thousand, as large as
necessary to ensure good resolution. Knowing these eigenstates,
we can directly evaluate the zero-temperature dynamical structure
factor S(k,ω):

S(k,ω) =

∫
dt

2π
eiωt

〈G.S.|Sα
−k(t)Sαk (0)|G.S.〉

=

∑
n

∣∣〈G.S.|Sα
−k|Ψnk〉

∣∣2
δ(ω−Enk). (4)

For consistency, we approximate the ground state |G.S.〉 by
its perturbative form to first order in J ′(k), although this
correction has little effect on the results. Details are given in the
Supplementary Information.

Unexpectedly, it is possible to show analytically that the
structure factor obtained in this way has nearly the same form as
found in the well-known random phase approximation (RPA). In
particular, as shown in the Supplementary Information (the O(J ′)
correction to the ground state is neglected for simplicity)

S(k,ω) =
S1D(kx ,ω)

[1+ J ′(k)χ′

1D(kx ,ω)]2 +[J ′(k)χ′′

1D(kx ,ω)]2
. (5)

Here S1D(kx , ω) = χ′′

1D(kx , ω)/π = Dkx (ω)|Akx (ω)|2 is
the two-spinon structure factor of a single chain39 and
χ′

1D(kx ,ω) =
∫

∞

0
dω′S1D(kx ,ω

′)/(ω′
− ω). This nearly coincides

with the RPA expression, which is obtained by replacing
our χ with the dynamic susceptibility of a single chain,
χ′

1D → Reχ1D,χ′′

1D → Imχ1D. Reχ1D differs from χ′

1D by a small
contribution from ω′ < 0. However, the differences between the
RPA and our two-spinon result, with or without the ground-
state correction, are very small in all situations of interest—see
Supplementary Information.

We find three types of distinctive spectral feature depending on
the momentum, determined by the value of J ′(k).

(1) J ′(k) < 0. S(k,ω) has a δ-function peak below the
continuous spectrum. A typical example is shown in Fig. 2a. As
discussed above, this peak arises from a triplon bound state of two
spinons, |Ψ1k〉. The triplon dispersion ωt (k) is determined from
the pole of equation (5), where

1+ J ′(k)χ′

1D(kx ,ωt (k)) = 0

and χ′′

1D(kx ,ωt (k)) = 0 outside the continuum. The pole appears
below ω2,l because there χ′

1D is positive. The interchain dispersion
of the triplon is due to the ky dependence of J ′(k). In the weak
interchain-coupling regime, the spectral weight Z and binding
energy δE = ω2,l(kx) − ωt (k) of the peak are small, and behave
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Figure 3 Comparison with the experimental result for dynamical structure
factor S (k,ω ) at k ′

x =π. The solid line denotes the two-spinon structure factor
S1D (π,ω ) of a single chain with exchange J= 0.374meV (ref. 15). The symbols
with error bars are the experimental data obtained by the inelastic neutron
scattering experiment on Cs2CuCl4, taken from the G scan of Fig. 5 in ref. 15. The
inset shows the log–log plot. The theoretical result is fitted to the experimental data
by adjusting the height with a single multiplication factor.

as Z ∼ |J ′(kx , ky)| and δE ∼ |J ′(kx , ky)|
2 (up to logarithmic

corrections). See the Supplementary Information for details.
(2) J ′(k) > 0. The spectral weight shifts upwards, and the

peak is broadened in the continuum, see Fig. 2b. A suppression of
spectral weight at the lower edge of the continuum occurs due to
repulsion between the two spinons. When J ′(kx ,ky) is sufficiently
large, a δ-function peak appears above the two-spinon continuum.
This peak corresponds to an anti-bound triplon state. However,
the anti-bound peak is broadened by the four-spinon contribution,
which leads to non-zero spectral density above the two-spinon
upper boundary, ω > ω2,u (ref. 40).

(3) J ′(k) = 0. For such momenta, the structure factor is
identical in the two-spinon approximation to that of a set of
decoupled chains. For the frustrated situation of principal interest,
where J ′

1 = J ′

2 + J ′

3, this condition is always satisfied for kx = π (but
it may also be true elsewhere).

Now, let us compare the above features with the experimental
results14,15 on Cs2CuCl4. The coupling constants are experimentally
estimated as J = 0.374(5) meV and J ′

= J ′

1 = J ′

2 = 0.128(5) meV,
which gives J ′/J = 0.34(3) (ref. 20). This compound also has
some very weak further Dzyaloshinskii–Moriya and interplane
interactions not included in our model. The coupling constants
of these interactions are experimentally estimated as about 0.05J
(ref. 20). These are significant for the low-energy properties of
the ordered phase31,41 and excitations above it42. The ordering has
negligible effect on the physics for energies higher than about
0.1J , which is the regime of focus here and in the experiments in
refs 14,15. In the notation of refs 14,15, the Fourier component
of the interchain couplings reads J ′(k) = 4J ′ cos(k′

x/2)cos(k′

y/2),
where k′

x and k′

y are the momenta corresponding to the b and c
axes in refs 14,15, respectively: k′

x = kx and k′

y = kx +2ky .
First, we discuss the large tail of S(k,ω) and the interpretation

of the power-law behaviours observed in Cs2CuCl4 (ref. 15). In
the present approach, a power-law behaviour at the lower edge
of the continuum (ω2,l) is obtained only when J ′(k) = 0. There,
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Figure 4 Comparison of S (k,ω ) with neutron scattering data on Cs2CuCl4. a–d, Comparison with experimental results for dispersion relations at k ′

y = 0 (a), k ′

y = 2π
(b), k ′

y = 3π (c) and k ′

x = −π/2 (d). The density plots are the present results of dynamical structure factor S (k,ω ) for J ′

1 = J ′

2 = 0.34J, J ′

3 = 0 and J= 0.374meV. The
filled and open symbols with error bars denote the main peak and the upper and lower edges of the spectrum observed by the neutron scattering experiment on Cs2CuCl4,
respectively, taken from ref. 15. Graphs a–d correspond to (1), (3), (4) and (2) of Fig. 3 in ref. 15, respectively. e, S (k,ω ) at k ′

x = −π/2 near the lower edge of continuum
obtained by the present approach. The sign of J ′ (k) changes at k ′

y = 3π. f,g, Comparison with experimental data for the lineshape of S (k,ω ) at k′
= (−π/2,2π) (f) and

k′
= (−π/2,4π) (g). The dotted lines are the present results within the two-spinon subspace multiplied by the normalization factor obtained by fitting the G scan in Fig. 3.

The solid lines are the RPA result, which accounts for the four-spinon states as obtained in a chain of length Lx = 288, see the main text for the details. The numerical data in
f and g are broadened by the energy resolution 1E= 0.019meV of the spectrometer15 including the isotropic magnetic form factor of Cu2+ ions. The symbols are
experimental data for the E scan (f) and F scan (g) of Fig. 5 in ref. 15.

we expect the same behaviour as occurs in decoupled Heisenberg
chains, that is, S(k,ω) ∝

√
−ln[ω−ω2,l]/[ω−ω2,l] at kx 6=π and

S(k,ω)∝
√

−lnω/ω at kx =π near the lower edge of continuum39.

On a spatially anisotropic triangular lattice, J ′(k) is zero on the
lines of kx = π and ky = (π− kx)/2 in momentum space, which
correspond to the lines of k′

x = π and k′

y = π. The experimental
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result at k′

x = π is given as the G scan in ref. 15. The comparison
of S(k,ω) at k′

x = π between the present result (that is, S1D(k,ω)
of the Heisenberg chain) and the experimental data (G scan
in Fig. 5 of ref. 15) is shown in Fig. 3. Only a single fitting
parameter—for the global height of intensity in this plot—has been
used. For all further comparisons (below), we will use the same
normalization, so the remaining comparisons are parameter-free.
Although the theoretical curve and experimental data differ at low
energies owing to the neglect of long-range magnetic order and the
Dzyaloshinskii–Moriya interaction in the theory, the agreement at
higher energy is quite good.

We next turn to the dispersion relation, which we define here,
to ease comparison with experimental data, by the location of the
peak ω(k) in S(k,ω) at each k. A comparison of our result and
the experimental data (from Fig. 3 in ref. 15) is shown in Fig. 4.
Note that there is no fitting parameter in this plot. The asymmetry
of the dispersion relation of the main peak with respect to k′

x = π

and 3π observed at k′

y =0 and 2π is consistently reproduced by the
present approach (Fig. 4a,b). At k′

y = 3π, the dispersion relation
is symmetric because J ′(k) is zero at this momentum, which
is also consistent with the experimental observation (Fig. 4c).
Despite the 1D starting point of the approach, it also explains
the experimental dependence on transverse momentum (k′

y).
Figure 4d,e shows S(k,ω) in the perpendicular direction to k′

x at
k′

x = −π/2. The sign of J ′(k) changes at k′

y = 3π. This causes
the following change in S(k,ω): as shown in Fig. 4e, a bound
state is formed just below the continuum for k′

y < 3π. On the
other hand, for k′

y > 3π, the spectral weight shifts upwards and
the peak is broadened and absorbed into the continuum. Put
simply, the lower edge of continuum (open squares in Fig. 4a–d)
lies below the peak only in the region of J ′(k) > 0, and the main
peak is always observed at the lowest energy of the spectrum for
J ′(k) ≤ 0. These features are exactly in accord with the theoretical
predictions. Moreover, for J ′(k) < 0, the peak is much sharper
(in fact resolution-limited) than for J ′(k) > 0. This is shown in
Fig. 4f,g, which compares our theoretical predictions to scans E,F
of ref. 15—note the factor of 3.5 larger scale in Fig. 4f compared
with Fig. 4g.

Furthermore, the asymmetry of the experimental estimate of
the upper edge of continuum with respect to k′

x = π or k′

y = 3π
is also qualitatively understood: at the momenta with J ′(k) > 0,
the spectral weight shifts upwards, and the high-energy weight
becomes larger. On the other hand, in the region of J ′(k) < 0,
the high-energy weight decreases, because part of it shifts into the
bound state (Figs 2 and 4e). In agreement, the experiment (open
circles in Fig. 4a–d) shows that the upper edge of continuum shifts
a little bit along the momentum axis towards the region of J ′(k)> 0
from k′

x =π or k′

y = 3π.
Our approach allows for systematic improvements by including

further multi-spinon states. As a first step, we included the four-
spinon states in the RPA approximation. This is done numerically
by expressing the matrix element in equation (4) for a finite-length
Heisenberg chain as a product of determinants43–45. The sum rule
for the total spectral weight and the first frequency moment is
satisfied by more than 99% for the length (Lx = 288) considered.
We then calculate from this equation (5) using χ′

1D → Reχ1D

and χ′′

1D → Imχ1D and obtain the 2D S(k,ω). We note that the
finite-size errors for Lx = 288 are insignificant compared with the
instrumental resolution. The resulting changes are small but very
encouraging—the bound state in scan E has moved down a little,
making agreement with experimental data essentially perfect (see
Fig. 4f). We also observe that the anti-bound states, being located
in the region of ω−k space with non-zero spectral weight for four-
spinon excitations, acquire a non-zero linewidth as expected, but
that this is small enough that they remain visible features.

We conclude with a general discussion of our method and
its ramifications. The most significant feature is the emergence
of a spinon bound state driven by kinetic energy. Despite the
superficial similarity to the more familiar magnon, the physics
of the bound state is quite distinct. Specifically, a magnon is a
Goldstone mode that emerges in a long-range ordered magnet
as a consequence of broken symmetry. In our calculations, no
such broken symmetry is presumed. Instead, the bound and anti-
bound states are true s = 1 triplet excitations, better characterized
as triplons than magnons46,47.

Because in most cases, weakly coupled spin chains do eventually
order at low enough temperature, it is important to understand the
validity of our scheme in this situation. For this, it is crucial that
we consider frustrated interchain couplings (J ′

1 = J ′

2 + J ′

3). In this
case, the leading divergence associated with coupling neighbouring
chains—the strong tendency to Néel order at kx = π within each
chain—is removed because J ′(π,ky) = 0. Without this condition,
strong long-range Néel order which influences spectral features
on the scale of O(J ′) is obtained48. As this effect is comparable
to those captured by the two-spinon approximation, the latter is
unjustified without frustration. With frustration, any fluctuation-
induced order has a much smaller characteristic energy scale31,41,49,
and can be neglected compared with the shifts of excited states
captured by the present approach. Precisely this same frustration
condition, J ′(π, ky) = 0, implies the persistence of ‘free’ spinons
in the 2D neutron spectrum at these momenta. Of course, the
presence of any long-range order, however weak, does modify some
excitations in a qualitative manner. The triplon, when present, is
expected to transform smoothly into a magnon as a consequence.
In regions of momentum space where no bound state is present
below the continuum, J ′(k)> 0, a magnon may weakly emerge as
a consequence of long-range order.

There are numerous important directions for extensions and
applications. It would be interesting to make a comparison with
neutron measurements of Cs2CuBr4, which is isostructural to
Cs2CuCl4 but with larger J ′/J ≈ 0.5 (ref. 50), and to search for
signs of the anti-bound triplon in either material. Some theoretical
extensions would be to include 3D and Dzyaloshinskii–Moriya
couplings, to systematically treat higher-spinon states, to include
thermal fluctuations at T > 0 and to take into account weak
long-range order. A very interesting different direction is to apply
analogous methods to spatially anisotropic strongly interacting
conductors, modelled by Hubbard or t–J-type hamiltonians. Given
the remarkable success of this approach in resolving the long-
standing puzzle of the inelastic neutron spectra of Cs2CuCl4,
and the very small arsenal of theoretical techniques capable
of reliably obtaining intermediate energy spectra in strongly
interacting systems above one dimension, further investigation of
such methodology seems highly worthwhile.

Received 13 June 2007; accepted 12 September 2007; published 14 October 2007.
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