
As society moves towards a renewable energy future, it’s crucial that solar panels convert light into electricity as efficiently as possible. Some state-of-the-art solar cells are close to the theoretical maximum of efficiency—and physicists from the University of Utah and Helmholtz-Zentrum Berlin have figured out a way to make them even better.

A five-year quest to map the universe and unravel the mysteries of dark energy began officially on May 17, 2021, at Kitt Peak National Observatory near Tucson, Arizona. The Dark Energy Spectroscopic Instrument (DESI) will capture and study the light from more than 30 million galaxies and other distant objects, allowing scientists to construct a 3-D map of the universe with unprecedented detail.
It was the beginning of a grand experiment unlike anything the world had ever seen. Ten years ago today, the IceCube Neutrino Observatory fully opened its eyes for the first time. Dozens of intrepid technicians, engineers, and scientists had traveled to the South Pole to build the biggest, strangest telescope in the world. The purpose of the unconventional telescope was to detect signals from passing astrophysical neutrinos: mysterious, tiny, extremely lightweight particles created by some of the most energetic and distant phenomena in the cosmos. IceCube’s founders believed that studying these astrophysical neutrinos would reveal hidden parts of the universe. Over the course of the next decade, they would be proven right.